Home | Benchmarks | Categories | Atom Feed

Posted on Tue 03 May 2016 under Databases

Performance Impact of File Sizes on Presto Query Times

When CSV data is imported from originating files into an ORC-formatted table, hive will map the underlying ORC files one-to-one with the CSV files by default on Google Cloud's Dataproc.

So compressed CSV files like this:

2024092233  2016-04-11T09:53:27Z  gs://taxi-trips/csv/trips_xaa.csv.gz
2023686578  2016-04-11T09:53:27Z  gs://taxi-trips/csv/trips_xab.csv.gz

Will turn into ORC files like this:

2410749849  2016-04-28T11:59:41Z  gs://taxi-trips/orc_snappy/000000_0
2431245233  2016-04-28T11:59:42Z  gs://taxi-trips/orc_snappy/000001_0

The amount of data in each ORC file is determined, at least up to 2 GB of compressed CSV data, by the amount of data in each CSV file. I wanted to know if smaller files could in some way speed up or adversely affect performance.

Splitting up 1.1 Billion Records

Using the CSV data I created in my Billion Taxi Rides in Redshift blog post I'll create three new copies of the dataset. They will be made up of 64 MB, 256 MB and 1024 MB GZIP files respectively. I had to experiment a bit but after a while I found that to create 64 MB GZIP files of the CSV data I needed to have 655,000 lines in each file, for 256 MB I needed 2,650,000 lines and for 1 GB I needed 10,600,000 lines of data.

I have the original dataset of 56 GZIP-compressed CSV files in a folder called ~/taxi-trips. From that folder I'll create the three new datasets. Below are the commands I ran to do so.

$ cd ~/taxi-trips
$ mkdir 64mb 256mb 1024mb

$ gunzip -c *.csv.gz | \
    split -l 655000 \
          --filter="gzip > 64mb/trips_\$FILE.csv.gz"

$ gunzip -c *.csv.gz | \
    split -l 2650000 \
          --filter="gzip > 256mb/trips_\$FILE.csv.gz"

$ gunzip -c *.csv.gz | \
    split -l 10600000 \
          --filter="gzip > 1024mb/trips_\$FILE.csv.gz"

All resulting datasets were the same size so 104 GB x 4 = 416 GB of drive capacity was taken up.

Dataproc Cluster Up & Running

The CSV data will live on Google Cloud Storage (GCS) and will be imported directly into ORC files that live on HDFS. Below are the commands I ran to upload the data to GCS.

$ gsutil \
    -o GSUtil:parallel_composite_upload_threshold=150M \
    -m cp \
    ~/taxi-trips/64mb/*.csv.gz \
    gs://taxi-trips/csv-64mb/

$ gsutil \
    -o GSUtil:parallel_composite_upload_threshold=150M \
    -m cp \
    ~/taxi-trips/256mb/*.csv.gz \
    gs://taxi-trips/csv-256mb/

$ gsutil \
    -o GSUtil:parallel_composite_upload_threshold=150M \
    -m cp \
    ~/taxi-trips/1024mb/*.csv.gz \
    gs://taxi-trips/csv-1024mb/

Because ORC is a compressed format I shouldn't need more than 120 GB of pre-replicated HDFS capacity for each dataset but to be safe I've provisioned 1,200 GB of capacity on each node in my cluster. Before I launched this cluster I requested a quota increase from 10,240 GB to 14,000 GB for my total persistent disk space in EUROPE-WEST1.

$ gcloud dataproc clusters \
    create trips \
    --zone europe-west1-b \
    --master-machine-type n1-standard-4 \
    --master-boot-disk-size 1200 \
    --num-workers 10 \
    --worker-machine-type n1-standard-4 \
    --worker-boot-disk-size 1200 \
    --scopes 'https://www.googleapis.com/auth/cloud-platform' \
    --project taxis-1273 \
    --initialization-actions 'gs://taxi-trips/presto.sh'

To see detailed notes on launching a Dataproc cluster like this please see my blog post Billion Taxi Rides on Google's Dataproc running Presto.

The cluster took around 2 minutes to launch. I was then able to SSH into the master node.

$ gcloud compute ssh \
    trips-m \
    --zone europe-west1-b

Six Hive Tables

I'll be creating 6 tables in Hive. Three tables for the CSV files which will represent the 64 MB, 256 MB and 1024 MB datasets and three ORC-formatted tables. The ORC-formatted tables store the data in a compressed, columnar form which is much faster to query than when the data is in CSV format.

For clarity the table names for the CSV data are:

  • trips_csv_64mb
  • trips_csv_256mb
  • trips_csv_1024mb

Each of these tables will point to their respective folders on GCS via the LOCATION directive.

CREATE EXTERNAL TABLE trips_csv_64mb (
    trip_id                 INT,
    vendor_id               VARCHAR(3),
    pickup_datetime         TIMESTAMP,
    dropoff_datetime        TIMESTAMP,
    store_and_fwd_flag      VARCHAR(1),
    rate_code_id            SMALLINT,
    pickup_longitude        DECIMAL(18,14),
    pickup_latitude         DECIMAL(18,14),
    dropoff_longitude       DECIMAL(18,14),
    dropoff_latitude        DECIMAL(18,14),
    passenger_count         SMALLINT,
    trip_distance           DECIMAL(6,3),
    fare_amount             DECIMAL(6,2),
    extra                   DECIMAL(6,2),
    mta_tax                 DECIMAL(6,2),
    tip_amount              DECIMAL(6,2),
    tolls_amount            DECIMAL(6,2),
    ehail_fee               DECIMAL(6,2),
    improvement_surcharge   DECIMAL(6,2),
    total_amount            DECIMAL(6,2),
    payment_type            VARCHAR(3),
    trip_type               SMALLINT,
    pickup                  VARCHAR(50),
    dropoff                 VARCHAR(50),

    cab_type                VARCHAR(6),

    precipitation           SMALLINT,
    snow_depth              SMALLINT,
    snowfall                SMALLINT,
    max_temperature         SMALLINT,
    min_temperature         SMALLINT,
    average_wind_speed      SMALLINT,

    pickup_nyct2010_gid     SMALLINT,
    pickup_ctlabel          VARCHAR(10),
    pickup_borocode         SMALLINT,
    pickup_boroname         VARCHAR(13),
    pickup_ct2010           VARCHAR(6),
    pickup_boroct2010       VARCHAR(7),
    pickup_cdeligibil       VARCHAR(1),
    pickup_ntacode          VARCHAR(4),
    pickup_ntaname          VARCHAR(56),
    pickup_puma             VARCHAR(4),

    dropoff_nyct2010_gid    SMALLINT,
    dropoff_ctlabel         VARCHAR(10),
    dropoff_borocode        SMALLINT,
    dropoff_boroname        VARCHAR(13),
    dropoff_ct2010          VARCHAR(6),
    dropoff_boroct2010      VARCHAR(7),
    dropoff_cdeligibil      VARCHAR(1),
    dropoff_ntacode         VARCHAR(4),
    dropoff_ntaname         VARCHAR(56),
    dropoff_puma            VARCHAR(4)
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
  LOCATION 'gs://taxi-trips/csv-64mb/';

CREATE EXTERNAL TABLE trips_csv_256mb (
    trip_id                 INT,
    vendor_id               VARCHAR(3),
    pickup_datetime         TIMESTAMP,
    dropoff_datetime        TIMESTAMP,
    store_and_fwd_flag      VARCHAR(1),
    rate_code_id            SMALLINT,
    pickup_longitude        DECIMAL(18,14),
    pickup_latitude         DECIMAL(18,14),
    dropoff_longitude       DECIMAL(18,14),
    dropoff_latitude        DECIMAL(18,14),
    passenger_count         SMALLINT,
    trip_distance           DECIMAL(6,3),
    fare_amount             DECIMAL(6,2),
    extra                   DECIMAL(6,2),
    mta_tax                 DECIMAL(6,2),
    tip_amount              DECIMAL(6,2),
    tolls_amount            DECIMAL(6,2),
    ehail_fee               DECIMAL(6,2),
    improvement_surcharge   DECIMAL(6,2),
    total_amount            DECIMAL(6,2),
    payment_type            VARCHAR(3),
    trip_type               SMALLINT,
    pickup                  VARCHAR(50),
    dropoff                 VARCHAR(50),

    cab_type                VARCHAR(6),

    precipitation           SMALLINT,
    snow_depth              SMALLINT,
    snowfall                SMALLINT,
    max_temperature         SMALLINT,
    min_temperature         SMALLINT,
    average_wind_speed      SMALLINT,

    pickup_nyct2010_gid     SMALLINT,
    pickup_ctlabel          VARCHAR(10),
    pickup_borocode         SMALLINT,
    pickup_boroname         VARCHAR(13),
    pickup_ct2010           VARCHAR(6),
    pickup_boroct2010       VARCHAR(7),
    pickup_cdeligibil       VARCHAR(1),
    pickup_ntacode          VARCHAR(4),
    pickup_ntaname          VARCHAR(56),
    pickup_puma             VARCHAR(4),

    dropoff_nyct2010_gid    SMALLINT,
    dropoff_ctlabel         VARCHAR(10),
    dropoff_borocode        SMALLINT,
    dropoff_boroname        VARCHAR(13),
    dropoff_ct2010          VARCHAR(6),
    dropoff_boroct2010      VARCHAR(7),
    dropoff_cdeligibil      VARCHAR(1),
    dropoff_ntacode         VARCHAR(4),
    dropoff_ntaname         VARCHAR(56),
    dropoff_puma            VARCHAR(4)
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
  LOCATION 'gs://taxi-trips/csv-256mb/';

CREATE EXTERNAL TABLE trips_csv_1024mb (
    trip_id                 INT,
    vendor_id               VARCHAR(3),
    pickup_datetime         TIMESTAMP,
    dropoff_datetime        TIMESTAMP,
    store_and_fwd_flag      VARCHAR(1),
    rate_code_id            SMALLINT,
    pickup_longitude        DECIMAL(18,14),
    pickup_latitude         DECIMAL(18,14),
    dropoff_longitude       DECIMAL(18,14),
    dropoff_latitude        DECIMAL(18,14),
    passenger_count         SMALLINT,
    trip_distance           DECIMAL(6,3),
    fare_amount             DECIMAL(6,2),
    extra                   DECIMAL(6,2),
    mta_tax                 DECIMAL(6,2),
    tip_amount              DECIMAL(6,2),
    tolls_amount            DECIMAL(6,2),
    ehail_fee               DECIMAL(6,2),
    improvement_surcharge   DECIMAL(6,2),
    total_amount            DECIMAL(6,2),
    payment_type            VARCHAR(3),
    trip_type               SMALLINT,
    pickup                  VARCHAR(50),
    dropoff                 VARCHAR(50),

    cab_type                VARCHAR(6),

    precipitation           SMALLINT,
    snow_depth              SMALLINT,
    snowfall                SMALLINT,
    max_temperature         SMALLINT,
    min_temperature         SMALLINT,
    average_wind_speed      SMALLINT,

    pickup_nyct2010_gid     SMALLINT,
    pickup_ctlabel          VARCHAR(10),
    pickup_borocode         SMALLINT,
    pickup_boroname         VARCHAR(13),
    pickup_ct2010           VARCHAR(6),
    pickup_boroct2010       VARCHAR(7),
    pickup_cdeligibil       VARCHAR(1),
    pickup_ntacode          VARCHAR(4),
    pickup_ntaname          VARCHAR(56),
    pickup_puma             VARCHAR(4),

    dropoff_nyct2010_gid    SMALLINT,
    dropoff_ctlabel         VARCHAR(10),
    dropoff_borocode        SMALLINT,
    dropoff_boroname        VARCHAR(13),
    dropoff_ct2010          VARCHAR(6),
    dropoff_boroct2010      VARCHAR(7),
    dropoff_cdeligibil      VARCHAR(1),
    dropoff_ntacode         VARCHAR(4),
    dropoff_ntaname         VARCHAR(56),
    dropoff_puma            VARCHAR(4)
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
  LOCATION 'gs://taxi-trips/csv-1024mb/';

I'll then create three counterpart tables to store data in ORC format on HDFS. These tables are using, bar one exception, the fastest settings I found in my 33x Faster Queries on Google Cloud's Dataproc blog post. The stripe size, which has a large impact on performance, is set at 67,108,864 bytes so that it's consistent across all three tables and small enough to support the 64 MB version of the dataset.

For reference these are the table names:

  • trips_64mb
  • trips_256mb
  • trips_1024mb
CREATE EXTERNAL TABLE trips_64mb (
    trip_id                 INT,
    vendor_id               STRING,
    pickup_datetime         TIMESTAMP,
    dropoff_datetime        TIMESTAMP,
    store_and_fwd_flag      STRING,
    rate_code_id            SMALLINT,
    pickup_longitude        DOUBLE,
    pickup_latitude         DOUBLE,
    dropoff_longitude       DOUBLE,
    dropoff_latitude        DOUBLE,
    passenger_count         SMALLINT,
    trip_distance           DOUBLE,
    fare_amount             DOUBLE,
    extra                   DOUBLE,
    mta_tax                 DOUBLE,
    tip_amount              DOUBLE,
    tolls_amount            DOUBLE,
    ehail_fee               DOUBLE,
    improvement_surcharge   DOUBLE,
    total_amount            DOUBLE,
    payment_type            STRING,
    trip_type               SMALLINT,
    pickup                  STRING,
    dropoff                 STRING,

    cab_type                STRING,

    precipitation           SMALLINT,
    snow_depth              SMALLINT,
    snowfall                SMALLINT,
    max_temperature         SMALLINT,
    min_temperature         SMALLINT,
    average_wind_speed      SMALLINT,

    pickup_nyct2010_gid     SMALLINT,
    pickup_ctlabel          STRING,
    pickup_borocode         SMALLINT,
    pickup_boroname         STRING,
    pickup_ct2010           STRING,
    pickup_boroct2010       STRING,
    pickup_cdeligibil       STRING,
    pickup_ntacode          STRING,
    pickup_ntaname          STRING,
    pickup_puma             STRING,

    dropoff_nyct2010_gid    SMALLINT,
    dropoff_ctlabel         STRING,
    dropoff_borocode        SMALLINT,
    dropoff_boroname        STRING,
    dropoff_ct2010          STRING,
    dropoff_boroct2010      STRING,
    dropoff_cdeligibil      STRING,
    dropoff_ntacode         STRING,
    dropoff_ntaname         STRING,
    dropoff_puma            STRING
) STORED AS orc
  LOCATION '/trips_64mb/'
  TBLPROPERTIES ("orc.compress"="SNAPPY",
                 "orc.stripe.size"="67108864",
                 "orc.row.index.stride"="50000");

CREATE EXTERNAL TABLE trips_256mb (
    trip_id                 INT,
    vendor_id               STRING,
    pickup_datetime         TIMESTAMP,
    dropoff_datetime        TIMESTAMP,
    store_and_fwd_flag      STRING,
    rate_code_id            SMALLINT,
    pickup_longitude        DOUBLE,
    pickup_latitude         DOUBLE,
    dropoff_longitude       DOUBLE,
    dropoff_latitude        DOUBLE,
    passenger_count         SMALLINT,
    trip_distance           DOUBLE,
    fare_amount             DOUBLE,
    extra                   DOUBLE,
    mta_tax                 DOUBLE,
    tip_amount              DOUBLE,
    tolls_amount            DOUBLE,
    ehail_fee               DOUBLE,
    improvement_surcharge   DOUBLE,
    total_amount            DOUBLE,
    payment_type            STRING,
    trip_type               SMALLINT,
    pickup                  STRING,
    dropoff                 STRING,

    cab_type                STRING,

    precipitation           SMALLINT,
    snow_depth              SMALLINT,
    snowfall                SMALLINT,
    max_temperature         SMALLINT,
    min_temperature         SMALLINT,
    average_wind_speed      SMALLINT,

    pickup_nyct2010_gid     SMALLINT,
    pickup_ctlabel          STRING,
    pickup_borocode         SMALLINT,
    pickup_boroname         STRING,
    pickup_ct2010           STRING,
    pickup_boroct2010       STRING,
    pickup_cdeligibil       STRING,
    pickup_ntacode          STRING,
    pickup_ntaname          STRING,
    pickup_puma             STRING,

    dropoff_nyct2010_gid    SMALLINT,
    dropoff_ctlabel         STRING,
    dropoff_borocode        SMALLINT,
    dropoff_boroname        STRING,
    dropoff_ct2010          STRING,
    dropoff_boroct2010      STRING,
    dropoff_cdeligibil      STRING,
    dropoff_ntacode         STRING,
    dropoff_ntaname         STRING,
    dropoff_puma            STRING
) STORED AS orc
  LOCATION '/trips_256mb/'
  TBLPROPERTIES ("orc.compress"="SNAPPY",
                 "orc.stripe.size"="67108864",
                 "orc.row.index.stride"="50000");

CREATE EXTERNAL TABLE trips_1024mb (
    trip_id                 INT,
    vendor_id               STRING,
    pickup_datetime         TIMESTAMP,
    dropoff_datetime        TIMESTAMP,
    store_and_fwd_flag      STRING,
    rate_code_id            SMALLINT,
    pickup_longitude        DOUBLE,
    pickup_latitude         DOUBLE,
    dropoff_longitude       DOUBLE,
    dropoff_latitude        DOUBLE,
    passenger_count         SMALLINT,
    trip_distance           DOUBLE,
    fare_amount             DOUBLE,
    extra                   DOUBLE,
    mta_tax                 DOUBLE,
    tip_amount              DOUBLE,
    tolls_amount            DOUBLE,
    ehail_fee               DOUBLE,
    improvement_surcharge   DOUBLE,
    total_amount            DOUBLE,
    payment_type            STRING,
    trip_type               SMALLINT,
    pickup                  STRING,
    dropoff                 STRING,

    cab_type                STRING,

    precipitation           SMALLINT,
    snow_depth              SMALLINT,
    snowfall                SMALLINT,
    max_temperature         SMALLINT,
    min_temperature         SMALLINT,
    average_wind_speed      SMALLINT,

    pickup_nyct2010_gid     SMALLINT,
    pickup_ctlabel          STRING,
    pickup_borocode         SMALLINT,
    pickup_boroname         STRING,
    pickup_ct2010           STRING,
    pickup_boroct2010       STRING,
    pickup_cdeligibil       STRING,
    pickup_ntacode          STRING,
    pickup_ntaname          STRING,
    pickup_puma             STRING,

    dropoff_nyct2010_gid    SMALLINT,
    dropoff_ctlabel         STRING,
    dropoff_borocode        SMALLINT,
    dropoff_boroname        STRING,
    dropoff_ct2010          STRING,
    dropoff_boroct2010      STRING,
    dropoff_cdeligibil      STRING,
    dropoff_ntacode         STRING,
    dropoff_ntaname         STRING,
    dropoff_puma            STRING
) STORED AS orc
  LOCATION '/trips_1024mb/'
  TBLPROPERTIES ("orc.compress"="SNAPPY",
                 "orc.stripe.size"="67108864",
                 "orc.row.index.stride"="50000");

Importing 3.3 Billion Records

I then ran the following to import the data from CSV into ORC format.

$ screen
$ echo "INSERT INTO TABLE trips_64mb
        SELECT * FROM trips_csv_64mb;

        INSERT INTO TABLE trips_256mb
        SELECT * FROM trips_csv_256mb;

        INSERT INTO TABLE trips_1024mb
        SELECT * FROM trips_csv_1024mb;" | hive

Underlying Files

Breaking up the source files into 64, 256 and 1024 MB chunks results in ORC file counts that match their CSV counterparts. Below you can see the 64 MB dataset has 1,701 files, the 256 MB dataset has 421 files and the 1024 MB dataset has 106 files.

$ hadoop dfs -ls /trips_64mb | grep -c trips_
1701
$ hadoop dfs -ls /trips_256mb | grep -c trips_
421
$ hadoop dfs -ls /trips_1024mb | grep -c trips_
106

Benchmarking File Size Differences

I ran the following queries using Presto 0.144.1.

$ presto \
    --catalog hive \
    --schema default

I ran this query on each table repeatedly. Listed below are the lowest, and often most common query times.

SELECT cab_type,
       count(*)
FROM <table>
GROUP BY cab_type;
  • trips_64mb: 13 seconds
  • trips_256mb: 13 seconds
  • trips_1024mb: 12 seconds

As you can see there is no noticeable difference in query performance despite the difference in the number of underlying files used to store each table's data.

Here are the times for the following query.

SELECT passenger_count,
       avg(total_amount)
FROM <table>
GROUP BY passenger_count;
  • trips_64mb: 10 seconds
  • trips_256mb: 10 seconds
  • trips_1024mb: 11 seconds

Again, no real difference in query times.

Thank you for taking the time to read this post. I offer both consulting and hands-on development services to clients in North America and Europe. If you'd like to discuss how my offerings can help your business please contact me via LinkedIn.

Copyright © 2014 - 2025 Mark Litwintschik. This site's template is based off a template by Giulio Fidente.